Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463994

RESUMO

Human genetic studies have repeatedly associated SNPs near the gene ADAMTS7 with atherosclerotic cardiovascular disease. Subsequent investigations in mice demonstrated that ADAMTS7 is proatherogenic, induced in response to vascular injury, and alters smooth muscle cell function. However, the mechanisms governing this function and its relationship to atherosclerosis remain unclear. Here, we report the first conditional Adamts7 transgenic mouse in which the gene can be conditionally overexpressed in smooth muscle cells, mimicking its induction in atherosclerosis. We observed that smooth muscle cell Adamts7 overexpression results in a 3.5-fold increase in peripheral atherosclerosis, coinciding with an expansion of smooth muscle foam cells. RNA sequencing of Adamts7 overexpressed primary smooth muscle cells revealed an upregulation in the expression of lipid uptake genes. Subsequent experiments in primary smooth muscle cells demonstrated that increased Spi1 and Cd36 expression leads to increased smooth muscle cell oxLDL uptake. To uncover ADAMTS7 expression in human disease, we have interrogated the largest scRNA-seq dataset of human carotid atherosclerosis. This analysis discovered that endothelial cells had the highest expression level of ADAMTS7 with lesser expression in smooth muscle cells, fibroblasts, and mast cells. Subsequent conditional knockout studies in smooth muscle cells surprisingly showed no change in atherosclerosis, suggesting redundant expression of this secreted factor in the vessel wall. Finally, mice overexpressing Adamts7 in endothelial cells also exhibit increased atherosclerosis, suggesting that multiple vascular cell types can contribute to ADAMTS7-mediated foam cell expansion. In summary, Adamts7 is expressed by multiple vascular cell types in atherosclerosis, and ADAMTS7 promotes oxLDL uptake in smooth muscle cells, increasing smooth muscle foam cell formation and peripheral atherosclerosis in mice.

3.
Arterioscler Thromb Vasc Biol ; 44(4): 930-945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385291

RESUMO

BACKGROUND: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS: We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Células Endoteliais/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Doenças das Artérias Carótidas/patologia , Epitopos/metabolismo , Miócitos de Músculo Liso/metabolismo
4.
medRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37502836

RESUMO

Background: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results: We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.

5.
Curr Atheroscler Rep ; 25(8): 447-455, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354304

RESUMO

PURPOSE OF REVIEW: Genome-wide association studies have repeatedly linked the metalloproteinase ADAMTS7 to coronary artery disease. Here we aim to highlight recent findings surrounding the human genetics of ADAMTS7, novel mouse models that investigate ADAMTS7 function, and potential substrates of ADAMTS7 cleavage. RECENT FINDINGS: Recent genome-wide association studies in coronary artery disease have replicated the GWAS signal for ADAMTS7 and shown that the signal holds true even across different ethnic groups. However, the direction of effect in humans remains unclear. A recent novel mouse model revealed that the proatherogenicity of ADAMTS7 is derived from its catalytic functions, while at the translational level, vaccinating mice against ADAMTS7 reduced atherosclerosis. Finally, in vitro proteomics approaches have identified extracellular matrix proteins as candidate substrates that may be causal for the proatherogenicity of ADAMTS7. ADAMTS7 represents an enticing target for therapeutic intervention. The recent studies highlighted here have replicated prior findings, confirming the genetic link between ADAMTS7 and atherosclerosis, while providing further evidence in mice that ADAMTS7 is a targetable proatherogenic enzyme.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Animais , Camundongos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Proteína ADAMTS7/genética , Estudo de Associação Genômica Ampla , Aterosclerose/genética
6.
iScience ; 25(5): 104184, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494220

RESUMO

The response of vital organs to different types of nutrition or diet is a fundamental question in physiology. We examined the cardiac response to 4 weeks of high-fat diet in mice, measuring cardiac metabolites and mRNA. Metabolomics showed dramatic differences after a high-fat diet, including increases in several acyl-carnitine species. The RNA-seq data showed changes consistent with adaptations to use more fatty acid as substrate and an increase in the antioxidant protein catalase. Changes in mRNA were correlated with changes in protein level for several highly responsive genes. We also found significant sex differences in both metabolomics and RNA-seq datasets, both at baseline and after high fat diet. This work reveals the response of a vital organ to dietary intervention at both metabolomic and transcriptomic levels, which is a fundamental question in physiology. This work also reveals significant sex differences in cardiac metabolites and gene expression.

7.
Mol Metab ; 56: 101412, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34890852

RESUMO

OBJECTIVE: Multiple genome-wide association studies (GWAS) have identified SNPs in the 8q24 locus near TRIB1 that are significantly associated with plasma lipids and other markers of cardiometabolic health, and prior studies have revealed the roles of hepatic and myeloid Trib1 in plasma lipid regulation and atherosclerosis. The same 8q24 SNPs are additionally associated with plasma adiponectin levels in humans, implicating TRIB1 in adipocyte biology. Here, we hypothesize that TRIB1 in adipose tissue regulates plasma adiponectin, lipids, and metabolic health. METHODS: We investigate the metabolic phenotype of adipocyte-specific Trib1 knockout mice (Trib1_ASKO) fed on chow and high-fat diet (HFD). Through secretomics of adipose tissue explants and RNA-seq of adipocytes and livers from these mice, we further investigate the mechanism of TRIB1 in adipose tissue. RESULTS: Trib1_ASKO mice have an improved metabolic phenotype with increased plasma adiponectin levels, improved glucose tolerance, and decreased plasma lipids. Trib1_ASKO adipocytes have increased adiponectin production and secretion independent of the known TRIB1 function of regulating proteasomal degradation. RNA-seq analysis of adipocytes and livers from Trib1_ASKO mice indicates that alterations in adipocyte function underlie the observed plasma lipid changes. Adipose tissue explant secretomics further reveals that Trib1_ASKO adipose tissue has decreased ANGPTL4 production, and we demonstrate an accompanying increase in the lipoprotein lipase (LPL) activity that likely underlies the triglyceride phenotype. CONCLUSIONS: This study shows that adipocyte Trib1 regulates multiple aspects of metabolic health, confirming previously observed genetic associations in humans and shedding light on the further mechanisms by which TRIB1 regulates plasma lipids and metabolic health.


Assuntos
Adiponectina , Estudo de Associação Genômica Ampla , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Triglicerídeos/metabolismo
8.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779419

RESUMO

Genetic variants near the TRIB1 gene are highly significantly associated with plasma lipid traits and coronary artery disease. While TRIB1 is likely causal of these associations, the molecular mechanisms are not well understood. Here we sought to investigate how TRIB1 influences low density lipoprotein cholesterol (LDL-C) levels in mice. Hepatocyte-specific deletion of Trib1 (Trib1Δhep) in mice increased plasma cholesterol and apoB and slowed the catabolism of LDL-apoB due to decreased levels of LDL receptor (LDLR) mRNA and protein. Simultaneous deletion of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα) with TRIB1 eliminated the effects of TRIB1 on hepatic LDLR regulation and LDL catabolism. Using RNA-seq, we found that activating transcription factor 3 (Atf3) was highly upregulated in the livers of Trib1Δhep but not Trib1Δhep CebpaΔhep mice. ATF3 has been shown to directly bind to the CEBPα protein, and to repress the expression of LDLR by binding its promoter. Blunting the increase of ATF3 in Trib1Δhep mice reduced the levels of plasma cholesterol and partially attenuated the effects on LDLR. Based on these data, we conclude that deletion of Trib1 leads to a posttranslational increase in CEBPα, which increases ATF3 levels, thereby contributing to the downregulation of LDLR and increased plasma LDL-C.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lipoproteínas LDL/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de LDL/análise , Fator 3 Ativador da Transcrição/fisiologia , Animais , Apolipoproteínas B/metabolismo , Feminino , Humanos , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/fisiologia
9.
Arterioscler Thromb Vasc Biol ; 41(10): 2513-2515, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34433295

RESUMO

The pursuit of knowledge, curiosity about the natural world, and a drive to better the human condition are several of the many motivations that encourage someone to further their education in the biological sciences. However noble the intentions, success in an academic graduate program, and perhaps more importantly, in the career options that follow, is not guaranteed. While it is often said that a trainee needs support from their mentors and network to succeed, the Arteriosclerosis, Thrombosis and Vascular Biology Early Career Committee has observed, through our many interactions, both face to face and in the virtual space, that many trainees do not appreciate that building their mentoring network is an active process, and the trainee has more agency in the relationship than perhaps they perceive. In the article below, we discuss our views on building relationships and identifying mentors at different levels and for different purposes. We also highlight events hosted by the Arteriosclerosis, Thrombosis and Vascular Biology Early Career Committee at Vascular Discoveries, Scientific Sessions, and in the virtual space that can help you at the critical career stage.


Assuntos
Pesquisa Biomédica , Escolha da Profissão , Mobilidade Ocupacional , Relações Interpessoais , Mentores , Pesquisadores , Rede Social , Humanos , Motivação , Sociedades Médicas , Sociedades Científicas
10.
Curr Opin Lipidol ; 32(3): 175-182, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33883444

RESUMO

PURPOSE OF REVIEW: The pseudokinase Tribbles-1 (TRIB1) remains the focus of intense research since genome-wide association studies (GWAS) associated it with multiple cardiometabolic traits in humans, including plasma lipids and atherosclerosis. This review highlights recent advances in understanding the function of TRIB1 and what outstanding questions remain. RECENT FINDINGS: Studies performed in a myeloid-specific Trib1 mouse model show that Trib1 contributes to foam cell formation, underscoring the importance of continued research into tissue-specific functions of TRIB1. Investigations of TRIB1 function in a 3D hepatic organoid model demonstrate that hepatic TRIB1 functions elucidated in mouse models are recapitulated in these organoid systems. Lastly, a recent study showed berberine, an existing lipid-lowering drug, to be acting via a TRIB1-dependent mechanism, highlighting both a novel regulator of TRIB1 expression and the potential of studying TRIB1 through existing therapeutics. SUMMARY: TRIB1 remains one of the more fascinating loci to arise from cardiometabolic GWAS, given the constellation of traits it associates with. As genetic studies continue to link TRIB1 to metabolic phenotypes, more functional research on tissue-specific TRIB1, regulation of TRIB1 and its function in current therapies, as well as the reproduction of results from mice in human contexts are all necessary to increase our understanding of TRIB1 and its relevance.


Assuntos
Doenças Cardiovasculares , Peptídeos e Proteínas de Sinalização Intracelular , Lipídeos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Doenças Cardiovasculares/sangue , Estudo de Associação Genômica Ampla , Humanos , Lipídeos/sangue
11.
Sci Adv ; 5(10): eaax9183, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692955

RESUMO

Macrophages drive atherosclerotic plaque progression and rupture; hence, attenuating their atherosclerosis-inducing properties holds promise for reducing coronary heart disease (CHD). Recent studies in mouse models have demonstrated that Tribbles 1 (Trib1) regulates macrophage phenotype and shows that Trib1 deficiency increases plasma cholesterol and triglyceride levels, suggesting that reduced TRIB1 expression mediates the strong genetic association between the TRIB1 locus and increased CHD risk in man. However, we report here that myeloid-specific Trib1 (mTrib1) deficiency reduces early atheroma formation and that mTrib1 transgene expression increases atherogenesis. Mechanistically, mTrib1 increased macrophage lipid accumulation and the expression of a critical receptor (OLR1), promoting oxidized low-density lipoprotein uptake and the formation of lipid-laden foam cells. As TRIB1 and OLR1 RNA levels were also strongly correlated in human macrophages, we suggest that a conserved, TRIB1-mediated mechanism drives foam cell formation in atherosclerotic plaque and that inhibiting mTRIB1 could be used therapeutically to reduce CHD.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Mieloides/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Depuradores Classe E/metabolismo
12.
Hum Mutat ; 40(12): 2197-2220, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343788

RESUMO

Alagille syndrome is an autosomal dominant disease with a known molecular etiology of dysfunctional Notch signaling caused primarily by pathogenic variants in JAGGED1 (JAG1), but also by variants in NOTCH2. The majority of JAG1 variants result in loss of function, however disease has also been attributed to lesser understood missense variants. Conversely, the majority of NOTCH2 variants are missense, though fewer of these variants have been described. In addition, there is a small group of patients with a clear clinical phenotype in the absence of a pathogenic variant. Here, we catalog our single-center study, which includes 401 probands and 111 affected family members amassed over a 27-year period, to provide updated mutation frequencies in JAG1 and NOTCH2 as well as functional validation of nine missense variants. Combining our cohort of 86 novel JAG1 and three novel NOTCH2 variants with previously published data (totaling 713 variants), we present the most comprehensive pathogenic variant overview for Alagille syndrome. Using this data set, we developed new guidance to help with the classification of JAG1 missense variants. Finally, we report clinically consistent cases for which a molecular etiology has not been identified and discuss the potential for next generation sequencing methodologies in novel variant discovery.


Assuntos
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Receptor Notch2/genética , Síndrome de Alagille/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Proteína Jagged-1/metabolismo , Masculino , Taxa de Mutação , Linhagem , Receptor Notch2/metabolismo
13.
Am J Hum Genet ; 105(1): 89-107, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31204013

RESUMO

Deciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases. Although histone modifications are important markers of gene regulatory elements of the genome, any specific histone modification has not been assayed in more than a few individuals in the human liver. As a result, the effects of genetic variation on histone modification states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural genetic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a total of 74 GWAS loci that have been associated with at least one complex phenotype. Our results reveal a repertoire of genes and regulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation of gene expression in the human liver tissue.


Assuntos
Cromatina/genética , Mapeamento Cromossômico/métodos , Epigênese Genética , Fígado/patologia , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Criança , Cromatina/metabolismo , Feminino , Estudos de Associação Genética , Células Hep G2 , Histonas/genética , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Regiões Promotoras Genéticas , Estudos Prospectivos , Sequências Reguladoras de Ácido Nucleico , Adulto Jovem
14.
Curr Opin Lipidol ; 30(3): 157-164, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30985365

RESUMO

PURPOSE OF REVIEW: Residual cardiovascular disease risk and increasing metabolic syndrome risk underscores a need for novel therapeutics targeting lipid metabolism in humans. Unbiased human genetic screens have proven powerful in identifying novel genomic loci, and this review discusses recent developments in such discovery. RECENT FINDINGS: Recent human genome-wide association studies have been completed in incredibly large, detailed cohorts, allowing for the identification of more than 300 genomic loci that participate in the regulation of plasma lipid metabolism. However, the discovery of these loci has greatly outpaced the elucidation of the underlying functional mechanisms. The identification of novel roles for long noncoding RNAs, such as CHROME, LeXis, and MeXis, in lipid metabolism suggests that noncoding RNAs should be included in the functional translation of GWAS loci. SUMMARY: Unbiased genetic studies appear to have unearthed a great deal of novel biology with respect to lipid metabolism, yet translation of these findings into actionable mechanisms has been slow. Increased focus on the translation, rather than the discovery, of these loci, with new attention paid to lncRNAs, can help spur the development of novel therapeutics targeting lipid metabolism.


Assuntos
Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Animais , Loci Gênicos/genética , Humanos
15.
Arterioscler Thromb Vasc Biol ; 39(6): 998-1005, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018662

RESUMO

Genome-wide association studies (GWAS) have identified hundreds of genomic loci in humans that are significantly associated with plasma cholesterol, triglycerides, and coronary artery disease. Although some loci contain genes with known regulatory roles in lipid metabolism and atherosclerosis, the majority were being implicated for the first time. The 8q24 locus, containing the gene TRIB1 ( Tribbles-1), is the only novel GWAS locus that associates with all 4 plasma lipid traits and coronary artery disease, an observation that has spurred immense interest in this locus. Subsequent in vivo loss and gain of function studies confirmed that Trib1 plays a role in hepatic lipid metabolism, validating the initial genetic observation. Yet, many challenges remain in discerning the nature of the association between the TRIB1 locus and cardiometabolic phenotypes. Is TRIB1 the causal gene at the 8q24 locus and what is the functional consequence of the associated noncoding variation? Is the relationship between TRIB1 and the transcription factor C/EBPα (CCAAT/enhancer-binding protein alpha) the primary molecular mechanism governing the genetic association or could it be an as yet unknown function for this interesting pseudokinase? Is hepatic TRIB1 the sole regulator of lipid metabolism or could extrahepatic TRIB1 play a role as well? The following review summarizes key findings related to these questions and highlights both the challenges and excitement in pursuing translational research of a novel gene in the post-GWAS era.


Assuntos
Doença da Artéria Coronariana/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Doença da Artéria Coronariana/patologia , Humanos , Lipogênese/genética , Triglicerídeos/sangue
17.
Am J Physiol Endocrinol Metab ; 315(4): E676-E693, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509432

RESUMO

Obesity is associated with adipose tissue inflammation that contributes to insulin resistance. Zinc finger protein 36 (Zfp36) is an mRNA-binding protein that reduces inflammation by binding to cytokine transcripts and promoting their degradation. We hypothesized that myeloid-specific deficiency of Zfp36 would lead to increased adipose tissue inflammation and reduced insulin sensitivity in diet-induced obese mice. As expected, wild-type (Control) mice became obese and diabetic on a high-fat diet, and obese mice with myeloid-specific loss of Zfp36 [knockout (KO)] demonstrated increased adipose tissue and liver cytokine mRNA expression compared with Control mice. Unexpectedly, in glucose tolerance testing and hyperinsulinemic-euglycemic clamp studies, myeloid Zfp36 KO mice demonstrated improved insulin sensitivity compared with Control mice. Obese KO and Control mice had similar macrophage infiltration of the adipose depots and similar peripheral cytokine levels, but lean and obese KO mice demonstrated increased Kupffer cell (KC; the hepatic macrophage)-expressed Mac2 compared with lean Control mice. Insulin resistance in obese Control mice was associated with enhanced Zfp36 expression in KCs. Compared with Control mice, KO mice demonstrated increased hepatic mRNA expression of a multitude of classical (M1) inflammatory cytokines/chemokines, and this M1-inflammatory hepatic milieu was associated with enhanced nuclear localization of IKKß and the p65 subunit of NF-κB. Our data confirm the important role of innate immune cells in regulating hepatic insulin sensitivity and lipid metabolism, challenge-prevailing models in which M1 inflammatory responses predict insulin resistance, and indicate that myeloid-expressed Zfp36 modulates the response to insulin in mice.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/genética , Fígado Gorduroso/genética , Inflamação/genética , Resistência à Insulina/genética , Obesidade/genética , Tristetraprolina/genética , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo , Tristetraprolina/imunologia , Tristetraprolina/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 37(11): 2156-2160, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882870

RESUMO

OBJECTIVE: To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. APPROACH AND RESULTS: We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA (LIPA-/-) had barely detectable LAL enzymatic activity. Control and LIPA-/- IPSDM were loaded with [3H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [3H]-cholesterol to apolipoprotein A-I was abolished in LIPA-/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [3H]-cholesterol-labeled AcLDL, [3H]-cholesterol efflux was, however, not different between control and LIPA-/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA-/- IPSDM. In nonlipid loaded state, LIPA-/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA-/- IPSDM. LIPA-/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B, IL6, and CCL5. CONCLUSIONS: LIPA-/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human macrophages.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/enzimologia , Lisossomos/enzimologia , Macrófagos/enzimologia , Esterol Esterase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína B-100/metabolismo , Diferenciação Celular , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Ésteres do Colesterol/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genótipo , Células HEK293 , Células Hep G2 , Humanos , Hidrólise , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Fenótipo , Proteólise , Esterol Esterase/genética , Fatores de Tempo , Transfecção
19.
Circulation ; 135(24): 2336-2353, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28461624

RESUMO

BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk. METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of <1.0×10-3 (Bonferroni correction for 50 tests). RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P=1.3×10-16) in comparison with 5% in ever-smokers (P=2.5×10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value=8.7×10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.


Assuntos
Doença das Coronárias/genética , Doença das Coronárias/prevenção & controle , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Fumar/genética , Proteína ADAMTS7/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Doença das Coronárias/epidemiologia , Vasos Coronários/patologia , Vasos Coronários/fisiologia , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fumar/efeitos adversos , Fumar/epidemiologia
20.
Trends Mol Med ; 22(4): 328-340, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26988439

RESUMO

Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Triglicerídeos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/prevenção & controle , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Hidrólise , Lipogênese , Lipoproteínas/sangue , Lipoproteínas/metabolismo , Fígado/metabolismo , Terapia de Alvo Molecular , Fatores de Risco , Transdução de Sinais , Receptores Toll-Like/metabolismo , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...